Coated conductors at Los Alamos – Progress and Projections

Paul Arendt, Steve Foltyn, Marty Maley, Vlad Matias, Dean Peterson

Superconductivity Technology Center

Materials Science and Technology Division

Los Alamos National Laboratory

Coated conductor milestones for IBAD/PLD at Los Alamos

2002 Wire Development Workshop January 22-23 • St. Petersburg

The future of coated conductors at Los Alamos

	2002	2003	2005
Conductor Performance	$I_c = 250 \text{ A}$ $1 \text{ cm x } 1 \text{ m}$		$I_c = 1000 \text{ A}$ two-sided meter
Cost Reduction	50 A meter IBAD MgO	YBCO on IBAD MgO as good as on IBAD YSZ	Reduce PLD cost by 5x from 2001 level
Research Park	Reel-to-reel process operational	10 meters $I_c = 50 \text{ A}$ $IBAD \text{ MgO}$	$\begin{array}{c} 100 \text{ meters} \\ I_c = 100 \text{ A} \\ \text{IBAD MgO} \end{array}$

Obstacles to reaching conductor performance goals

- ightharpoonup Rapid drop in J_c with increasing YBCO thickness
- ❖ No scientific understanding of how multilayers work
- ❖ I_c nonuniformity in continuously-processed tapes

High current requires thick films (I)

YBCO/Sm-123 multilayers help for thickness $> 2 \mu m$, but do not solve the basic problem

High current requires thick films (II)

- I_c for 200 µm bridges scaled to 1 cm width
- Single crystal I_cs multiplied by 0.67

IBAD MgO obstacles to achieving 2005 coated conductor projections

Performance limitations vs. IBAD YSZ not well understood

- Intrinsic to template micro & macro structure differences?
- Will different buffer materials improve YBCO performance on IBAD MgO?

IBAD MgO obstacles to achieving 2005 coated conductor projections (cont.)

Thinner IBAD demands a smoother substrate platform

Fabrication/finishing methods must be easily implemented and cost effective (e.g. as-rolled, electropolishing, CMP).

IBAD MgO obstacles to achieving 2005 coated conductor projections (cont.)

IBAD MgO has a narrow processing window

Can method(s) to increase IBAD thickness limitation also ameliorate platform smoothness requirements?

Challenges to reaching 2005 Research Park projections

- ➤ New knowledge is required for longer lengths
 - Need to address new issues, e.g. tape handling, quality control metrics, etc. ("longer is different")
- Process control -- zero tolerance of "killer" defects
 - Need an understanding of process windows for all variables in each step: metal substrate (e.g. roughness control), IBAD (e.g. texture control), PLD (e.g. superconductor properties)
 - Need in-line quality control, especially upstream and *in-situ*
- ➤ Adequate resources
 - Stable funding
 - Qualified manpower

Los Alamos involvement in coated conductor CRADAs

- ASC (1996 2001) sample exchange and analysis
- 3M (1997 present) IBAD modeling and *in-situ* monitoring, sample exchange and analysis
- IGC (2000 present) –technology transfer for 100 A tape

Scaling up Coated Conductor technology at IGC-SuperPower

- 3-yr CRADA with LANL and ANL to scale up coated conductor technology to manufacturing
- Pilot-scale facilities set up for buffer and YBCO manufacturing end of CY'00.
- Coated conductor made in short lengths (up to 1 m) using continuous processes in all steps at IGC-SuperPower end of CY'01.
- Buffer tapes with uniform texture of 13 14° produced. Also, YBCO tapes with $J_c > 1$ MA/cm² produced in continuous process.

Projections to mid-decade

• CY'02 Demonstrate performance of 100 A-m in lengths > 1 m in pilot manufacturing facilities

• CY'03 Demonstrate performance of 1000 A-m in lengths > 10 m in preproduction facilities

• Mid-decade Full commercial production with performance > 100,000 A-m in > 1 km lengths in production facilities

Critical issues for discussion tomorrow

Alternate markets

- Will DoD programs be able to bridge the gap as they have done in other technological fields –between the pre-commercial HTS of today and the high-volume, low-cost production needed for successful commercialization?
- Are there niche markets in which \$100-1000/kA-m is acceptable?

$\underline{J_c}$ vs. thickness

• Good combination of interesting technical problem and major cost driver.

